The Small RNA Chaperone Hfq and Multiple Small RNAs Control Quorum Sensing in Vibrio harveyi and Vibrio cholerae

نویسندگان

  • Derrick H Lenz
  • Kenny C Mok
  • Brendan N Lilley
  • Rahul V Kulkarni
  • Ned S Wingreen
  • Bonnie L Bassler
چکیده

Quorum-sensing bacteria communicate with extracellular signal molecules called autoinducers. This process allows community-wide synchronization of gene expression. A screen for additional components of the Vibrio harveyi and Vibrio cholerae quorum-sensing circuits revealed the protein Hfq. Hfq mediates interactions between small, regulatory RNAs (sRNAs) and specific messenger RNA (mRNA) targets. These interactions typically alter the stability of the target transcripts. We show that Hfq mediates the destabilization of the mRNA encoding the quorum-sensing master regulators LuxR (V. harveyi) and HapR (V. cholerae), implicating an sRNA in the circuit. Using a bioinformatics approach to identify putative sRNAs, we identified four candidate sRNAs in V. cholerae. The simultaneous deletion of all four sRNAs is required to stabilize hapR mRNA. We propose that Hfq, together with these sRNAs, creates an ultrasensitive regulatory switch that controls the critical transition into the high cell density, quorum-sensing mode.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational modeling of differences in the quorum sensing induced luminescence phenotypes of \textit{Vibrio harveyi} and \textit{Vibrio cholerae}

Vibrio harveyi and Vibrio cholerae have quorum sensing pathways with similar design and highly homologous components including multiple small RNAs (sRNAs). However, the associated luminescence phenotypes of strains with sRNA deletions differ dramatically: in V. harveyi, the sRNAs act additively; however, in V. cholerae, the sRNAs act redundantly. Furthermore, there are striking differences in t...

متن کامل

The low-resolution solution structure of Vibrio cholerae Hfq in complex with Qrr1 sRNA

In Vibrio cholerae, the RNA binding protein and chaperone Hfq (VcHfq) facilitates the pairing of the quorum regulatory RNA (Qrr) small regulatory RNAs (sRNAs) to the 5' untranslated regions of the mRNAs for a number of global regulators that modulate the expression of virulence genes. This Qrr-mediated sRNA circuit is an attractive antimicrobial target, but characterization at the molecular lev...

متن کامل

Quorum-sensing non-coding small RNAs use unique pairing regions to differentially control mRNA targets

Quorum sensing is a mechanism of cell-cell communication that bacteria use to control collective behaviours including bioluminescence, biofilm formation and virulence factor production. In the Vibrio harveyi and Vibrio cholerae quorum-sensing circuits, multiple non-coding small regulatory RNAs called the quorum-regulated small RNAs (Qrr sRNAs) function to establish the global quorum-sensing gen...

متن کامل

AphA and LuxR/HapR reciprocally control quorum sensing in vibrios.

Bacteria cycle between periods when they perform individual behaviors and periods when they perform group behaviors. These transitions are controlled by a cell-cell communication process called quorum sensing, in which extracellular signal molecules, called autoinducers (AIs), are released, accumulate, and are synchronously detected by a group of bacteria. AI detection results in community-wide...

متن کامل

Parallel Quorum Sensing Systems Converge to Regulate Virulence in Vibrio cholerae

The marine bacterium Vibrio harveyi possesses two quorum sensing systems (System 1 and System 2) that regulate bioluminescence. Although the Vibrio cholerae genome sequence reveals that a V. harveyi-like System 2 exists, it does not predict the existence of a V. harveyi-like System 1 or any obvious quorum sensing-controlled target genes. In this report we identify and characterize the genes enc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2004